

Available online at www.sciencedirect.com

Tetrahedron: *Asymmetry*

Tetrahedron: Asymmetry 18 (2007) 1033-1037

Acyclic β-amino acid catalyzed asymmetric *anti*-selective Mannich-type reactions

Pawel Dziedzic and Armando Córdova*

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden

Received 6 April 2007; accepted 26 April 2007 Available online 1 June 2007

Abstract—The ability of a primary amine containing acyclic β^3 -amino acids to catalyze direct asymmetric *anti*-selective Mannich-type reactions is presented. The reactions are generally highly diastereo- and enantioselective to give the corresponding Mannich products with up to >19:1 dr (*anti/syn*) and 88–99% ee.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The direct asymmetric Mannich reaction is one of the most important C-C bond-forming reactions in the construction of optically active nitrogen containing compounds.¹⁻³ In particular, the development of catalytic stereoselective methods for the asymmetric directed Mannich-type reaction has recently been the subject of intense research.⁴⁻⁶ One powerful way of catalyzing the direct asymmetric Mannich reaction is the use of proline and proline derivatives as catalysts.⁷ More recently, acyclic amino acids and their derivatives have been successfully used as catalysts for the direct intermolecular asymmetric Mannich reaction.⁸ There are several reports of organocatalytic direct syn-selective asymmetric Mannich-type reactions.^{5,7,8} However, there are only a few reports of organocatalytic *anti*-selective Mannich-type reactions.⁹ In this context, Maruoka¹⁰ and Barbas have developed chiral cyclic amine and pyrrolidine derivatives, respectively, as catalysts for anti-selective Mannich-type reactions with ketones as nucleophiles.¹¹ Moreover, Barbas et al. most recently showed that linear α -amino acids can catalyze the highly anti-selective addition of hydroxyacetone to imines.^{11b} Based on our original findings that acyclic amino acids can catalyze highly enantioselective, direct asymmetric Mannich reactions and the recent reports of β -amino acid catalyzed asymmetric aldol reactions,^{8,12} we envisioned that linear β -amino acids could possibly be used as catalysts for the direct asymmetric Mannich-type reaction. In addition, we predicted that the use of a homologous β -amino acid as a catalyst would change the facial selectivity on the attack of the chiral (*E*)-enamine intermediate resulting in an *anti*-selective Mannich-type reaction via the possible transition state **I** as compared to transition state **II** and transition state **III** of the linear amino acid catalyzed *syn*-selective Mannich reaction (Scheme 1). Molecular modeling indicated that the proton transfer from the carboxyl group of the β -amino acid to the nitrogen of the imine would be more favored in transition state **I**.

Herein, we report for the first time that acyclic β^3 -amino acids catalyze direct asymmetric *anti*-selective Mannich-type reactions with ketones as nucleophiles with high diastereo- and enantioselectivity (up to >19:1 dr, 88–99% ee).

2. Results and discussion

After an initial catalyst and solvent screen, we found that β^3 -amino acids, such as **4–6**, catalyzed the asymmetric addition of cyclohexanone **1a** to *N-para*-methoxyphenyl (PMP) protected α -imino glyoxylate **2** in wet DMSO to form amino acid derivative **3a** (Table 1).¹³

To our delight, the reactions were highly chemo-, diastereo-, and enantioselective and gave amino acid derivative **3a** in 52–92% yield with >19:1 dr (*anti/syn*) and 90–94% ee, respectively (entries 1–3). Notably, the acyclic β -amino acid catalyzed reactions proceeded with excellent *anti*-selectivity. In comparison, α -amino acids such as alanine 7 catalyze the reaction with high *syn*-selectivity (entry 4).⁸ Thus,

^{*} Corresponding author. Tel.: +46 8 162479; fax: +46 8 154908; e-mail addresses: acordova@organ.su.se; acordova1a@netscape.net

^{0957-4166/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2007.04.024

Scheme 1.

		$ \begin{array}{c} $	catalyst (30 mol%) sea water 5 equiv DMSO, rt	OMe OEt	
	H ₂ N 4	он _{H2} N 5	H ₂ N OH		
Entry	Cat.	Time (h)	Yield ^b (%)	dr ^c	ee ^d (%)
1	4	16	68	>19:1	94
2	5	16	52	>19:1	91
3	6	16	92	>19:1	90
4	7	14	60 ^e	1:16 ^e	98 ^e
5	5	16	48	>19:1	90 ^f

^a Experimental conditions: A mixture of 1 (0.25 mmol), cyclohexanone 1a (2.5 mmol), synthetic sea water (1.25 mmol, Aldrich ASTM D665), and catalyst (30 mol %) in 1.0 mL DMSO was stirred under the conditions displayed in the table.

^b Isolated yield of pure compound **3a**.

^c anti/syn ratio as determined by the ¹H NMR of the crude reaction mixture.

^d Determined by chiral-phase HPLC analysis.

^e Reaction conditions according to Ref. 8.

^f0.8 M NaCl solution (1.25 mmol) was used instead of synthetic seawater ASTM D665.

the strategy of employing the homologous acyclic β -amino acids as catalysts for *anti*-selective Mannich-type reactions was successful. Moreover, a small amount of synthetic seawater ASTM D665 (purchased from Aldrich) improved the enantioselectivity and accelerated the β -amino acid catalyzed reactions.¹⁴ The small amount of synthetic sea water can also be exchanged for a 0.8 M NaCl solution, which gave similar results (entry 5). Encouraged by these results, we decided to investigate the scope of the acyclic β -amino acid catalyzed Mannich-type reaction between different ketones **1** and imine **2** using amino acid **4** as the catalyst (Table 2).¹⁵

(S)- β -Homovaline **4** generally mediated the Mannich-type reactions with ketones **1a**-**1g** with excellent *anti*-selectivity

and high enantioselectivity to give the corresponding amino acid derivatives 3a-3g in up to >19:1 dr and 88– 99% ee. The reactions with cyclohexanones as nucleophiles were the most efficient. For example, the Mannich-type reaction between ketone 1b and imine 2 gave the corresponding diastereomers 3b and 3b' (3b:3b'-2:1) in 60% combined yield with 99% ee, respectively (entry 2). The β -homovaline 4-catalyzed Mannich addition with linear aliphatic 3-pentanone 1g as the donor was slow and low yielding but highly diastereo- and enantioselective (entries 6 and 7). Nevertheless, the results show that the plethora of primary amine containing β -amino acids should be considered as catalysts for direct asymmetric *anti*-selective Mannich-type reactions with ketones as nucleophiles.

Table 2. β^3 -Amino acid 4-catalyzed enantioselective Mannich-type reactions between ketones 1 and 2^a

		0 	PMP_N + H OEt	4 (30 mol%) sea water 5 equiv DMSO, rt	HN ² PMP OEt		
Entry	Ketone	Product		Time (h)	Yield ^b (%)	dr ^c	ee ^d (%)
1	1a	3a		16	68	>19:1	94
2	0 U 1b	O HN PMP OEt 3b	O HN PMP OEt 3b'	16	$60^{\rm e}$ (3b : 3b '-2:1) ^e	>19:1	99
3	0 	O HN PMP O OEt O OEt O OEt	O HN PMP OEt 3c'	16	$51^{\rm f}$ (3c:3c' -1:1) ^f	>19:1	94
4	o v o ld	O HN ² PMP OEt 3d		16	70	1:2	99
5	0 0 0 0 1e			16	44	>19:1	93
6	0 0 1f	O HN PMP O OEt O O O		16	20	>19:1	99
7	1f	3f		16	27 ^g	>19:1 ^g	99 ^g
8	ng of the second	O HN PMP O OEt 3g		72	12	>19:1	88

^a Experimental conditions: A mixture of 2 (0.25 mmol), ketone 1 (2.5 mmol), sea water (1.25 mmol), and catalyst (30 mol %) in 1.0 mL DMSO was stirred under the conditions displayed in the table.

^b Isolated yield of pure compound **3**.

^c anti/syn ratio as determined by ¹H NMR of the crude reaction mixture.

^d Determined by chiral-phase HPLC analysis.

^e Combined yield of **3b** and **3b'** (**3b:3b'**-2:1 as determined by ¹H NMR of the crude reaction mixture). ^f Combined yield of **3c** and **3c'** (**3c:3c'**-1:1 as determined by ¹H NMR of the crude reaction mixture).

^g Reaction performed with β^3 -amino acid **6** as the catalyst. PMP = *para*-methoxyphenyl.

The stereochemical outcome of the reaction was determined by epimerization of the (2S,3S)-syn-diastereomer of the Mannich product 3a derived by (S)-proline catalysis and comparison with the literature.^{11a,16} The experiment revealed that (2S,3R)-anti-**3a** was formed by (S)- $\hat{\beta}^3$ -amino acid catalysis. On the basis of the absolute configuration, we propose transition-state model I to account for the diastereo- and enantioselectivity of the (S)- β^3 -amino acid catalyzed formation of (S)-amino acid derivatives **3** (Scheme 1). As a result, the (S)- β -amino acids form an enamine with the ketone, which is attacked by the N-PMP protected imine from its *Re*-face providing (2S,3R)-anti- β -amino acid derivatives.

3. Conclusion

In conclusion, we have reported for the first time that primary amine containing acyclic β^3 -amino acids catalyze direct *anti*-selective Mannich-type reactions with ketones as nucleophiles. The reactions generally proceeded with high diastereo- and enantioselectivity and the corresponding amino acid derivatives are assembled in an asymmetric fashion with up to >19:1 dr and 88–99% ee. Thus, a great number of β^3 -amino acids should be considered as catalysts for the direct asymmetric Mannich reaction. Further investigations of the use of acyclic β -amino acids as catalysts in asymmetric Mannich reactions, mechanistic and molecular modeling studies are ongoing.

Acknowledgments

We gratefully acknowledge the Swedish National Research Council and Wenner-Gren Foundation for financial support. We thank Dr. Thavendran Govender and Professor Per I. Arvidsson for providing us with the β^3 -amino acids.

References

- 1. Mannich, C.; Krösche, W. Arch. Pharm. 1912, 250, 647.
- 2. Excellent reviews see: (a) Kleinmann, E. F. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 2, Chapter 4.1, (b) Arend, M.; Westerman, B.; Risch, N. Angew. Chem., Int. Ed. 1998, 37, 1044; (c) Denmark, S.; Nicaise, O. J.-C. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamomoto, H., Eds.; Springer: Berlin, 1999; Vol. 2, p 93; (d) Tramontini, M.; Angiolini, L. Tetrahedron 1990, 46, 1791; (e) Hellmann, H.; Optiz, G. α-Aminoalkylierung; Chemie: Weinheim, 1960, p 1; (f) For examples, see: Enantioselective Synthesis of β-Amino Acids; Juaristi, E., Ed.; Wiley-VCH: Weinheim, 1997; (g) Risch, N.; Esser, A. Liebigs Ann. 1992, 233; (h) Risch, N.; Arend, M. In Houben-Weyl: Methoden der Organischen Chemie; Müller, E., Ed.; Thieme: Stuttgart, 1995; Vol. E21b., 1908 (i) Vinkovic, V.; Sunjic, V. Tetrahedron 1997, 53, 689.
- For indirect asymmetric Mannich-type reactions see: (a) Enders, D.; Ward, D.; Adam, J.; Raabe, G. Angew. Chem., Int. Ed. 1996, 35, 981; (b) Enders, D.; Oberbörsch, S.; Adam, J.; Ward, D. Synthesis 2002, 18, 1737; (c) Kober, R.; Papadopoulos, K.; Miltz, W.; Enders, D.; Steglich, W.; Reuter, H.; Puff, H. Tetrahedron 1985, 42, 1963; (d) Enders, D.; Oberbörsch, S.; Adam, J. Synlett 2000, 644; (e) Seebach, D.; Hoffmann, M. Eur. J. Org. Chem. 1998, 1337; (f) Aoyagi, Y.; Jain, R. P.; Williams, R. M. J. Am. Chem. Soc. 2001, 123, 3472, and references cited therein; (g) Schöllkopf, U. In Topics in Current Chemistry; Boschke, F. L., Ed.; Springer: Berlin, 1983; Vol. 109, pp 45–85; (h) Evans, D. A.; Urpi, F.;

Somers, T. C.; Clark, J. S.; Bilodeau, M. T. J. Am. Chem. Soc. 1990, 112, 8215; (i) Palomo, C.; Oiarbide, M.; Landa, A.; Gonzales-Rego, M. C.; Garcia, J. M.; Gonzales, A.; Odriozola, J. M.; Martin-Pastor, M.; Linden, A. J. Am. Chem. Soc. 2002, 124, 8637, and references cited therein.

- For examples of indirect catalytic Mannich-type reactions see: (a) Kobayashi, S.; Hamada, T.; Manabe, K. J. Am. Chem. Soc. 2002, 124, 5640; (b) Ishitani, H.; Ueno, M.; Kobayashi, S. Org. Lett. 2002, 4, 143; (c) Ishitani, H.; Ueno, S.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 8180; (d) Hamashima, Y.; Yagi, K.; Tamas, H.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 14530; (e) Hamashima, Y.; Hotta, M.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 11240; (f) Ferraris, D.; Young, B.; Cox, C.; Drury, W. J., III; Dudding, T.; Lectka, T. J. Org. Chem. 1998, 63, 6090; (g) Ferraris, D.; Young, B.; Cox, C.; Dudding, T.; Drury, W. J., III; Ryzhkov, L.; Taggi, T.; Lectka, T. J. Am. Chem. Soc. 2002, 124, 67; (h) Josephsohn, W. S.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 3734.
- For examples of direct asymmetric Mannich-type reactions involving metals as catalysts see: (a) Yamasaki, S.; Iida, T.; Shibasaki, M. *Tetrahedron Lett.* **1999**, 40, 307; (b) Matsunaga, S.; Kumagai, N.; Harada, N.; Harada, S.; Shibasaki, M. J. Am. Chem. Soc. **2003**, 125, 4712; (c) Trost, B. M.; Terrell, L. M. J. Am. Chem. Soc. **2003**, 125, 338; (d) Juhl, K.; Gathergood, N.; Jørgensen, K. A. Angew. Chem., Int. Ed. **2001**, 40, 2995; (e) Marigo, M.; Kjaersgaard, A.; Juhl, K.; Gathergood, N.; Jørgensen, K. A. Chem. Eur. J. **2003**, 9, 2359; (f) Harada, S.; Handa, S.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. **2005**, 43, 4365.
- For examples of organocatalytic Mannich-type reactions see:

 (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566;
 (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356;
 (c) Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. J. Am. Chem. Soc. 2005, 127, 11256;
 (d) Wenzel, E. N.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964.
- 7. For selected examples see: (a) List, B. J. Am. Chem. Soc. 2000, 122, 9336; (b) Córdova, A.; Watanabe, S.-i.; Tanaka, F.; Notz, W.; Barbas, C. F., III. J. Am. Chem. Soc. 2002, 124, 1866; (c) Münch, A.; Wendt, B.; Christmann, M. Synlett **2004**, 2751; (d) Zhuang, W.; Saaby, S.; Jørgensen, K. A. *Angew. Chem., Int. Ed.* **2004**, *43*, 4476; (e) Fustero, S.; Jimenez, D.; Sanz-Cervera, J. F.; Sanchez-Rosello, M.; Esteban, E.; Simon-Fuentes, A. Org. Lett. 2005, 7, 3433; (f) Westermann, B.; Neuhaus, C. Angew. Chem., Int. Ed. 2005, 44, 4077; (g) Ibrahem, I.; Córdova, A. Tetrahedron Lett. 2005, 46, 3363; (h) Enders, D.; Grondal, C.; Vrettou, M.; Raabe, G. Angew. Chem., Int. Ed. 2005, 44, 4079; (i) Cobb, A. J. A.; Shaw, D. M.; Ley, S. V. Synlett 2004, 558; (j) Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 84; (k) Ibrahem, I.; Córdova, A. Chem. Commun. 2006, 1760; (1) Ibrahem, I.; Casas, J.; Córdova, A. Angew. Chem., Int. Ed. 2004, 43, 6528; (m) Ibrahem, I.; Zou, W.; Casas, J.; Sundén, H.; Córdova, A. Tetrahedron 2006, 62, 357; (n) Chi, Y.; Gellman, S. J. Am. Chem. Soc. 2006, 128, 6804; (o) Rodriguez, B.; Bolm, C. J. Org. Chem. 2006, 71, 2888; (p) Córdova, A. Synlett 2003, 1651; (q) Córdova, A. Chem. Eur. J. 2004, 10, 1987; (r) Ibrahem, I.; Córdova, A. Tetrahedron Lett. 2005, 46, 2839; (s) Liao, W.-W.; Ibrahem, I.; Córdova, A. Chem. Commun. 2006, 674; (t) Hayashi, Y.; Tsuboi, W.; Ashimine, I.; Urushima, T.; Shoji, M.; Sakai, K. Angew. Chem., Int. Ed. 2003, 42, 3677; (u) Hayashi, Y.; Urushima, T.; Shoji, M.; Uchimary, T.; Shiina, I. Adv. Synth. Catal. 2005, 347, 1595; (v) Enders, D.; Grondal, C.; Vrettou, M. Synthesis 2006, I3597.
- Ibrahem, I.; Zou, W.; Engqvist, M.; Xu, Y. Chem. Eur. J. 2005, 11, 7024.

- (a) Yoshida, T.; Morimoto, H.; Kumagai, N.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2005, 44, 3470; (b) Kano, T.; Yamaguchi, Y.; Tokuda, O.; Maruoka, K. J. Am. Chem. Soc. 2005, 127, 16408; (c) Mitsumori, S.; Zhang, H.; Cheong, P. H.-Y.; Houk, K. N.; Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc. 2006, 128, 1040; (d) Trost, B. M.; Jaratjaroonphong, J.; Reutrakul, U. J. Am. Chem. Soc. 2006, 128, 2778; (e) Córdova, A.; Barbas, C. F., III. Tetrahedron Lett. 2002, 43, 7749; (f) Franzen, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjaersgaard, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296; (g) Ibrahem, I.; Córdova, A. Chem. Commun. 2006, 1760.
- Kano, T.; Hato, Y.; Maruoka, K. Tetrahedron Lett. 2006, 47, 8467.
- (a) Zhang, H.; Mifsud, M.; Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc. 2006, 128, 9630; (b) Ramasastry, S. S. V.; Zhang, Z.; Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc. 2007, 129, 288.
- (a) Buchschacher, P.; Cassal, J.-M.; Fürst, A.; Meier, W. *Helv. Chim. Acta* 1977, 60, 2747; (b) Davies, S. G.; Sheppard, R. L.; Smith, A. D.; Thomson, J. E. *Chem. Commun.* 2005, 3802; (c) Limbach, M. *Tetrahedron Lett.* 2006, 3843; (d) Córdova, A.; Zou, W.; Dziedzic, P.; Ibrahem, I.; Reyes, E.; Xu, Y. *Chem. Eur. J.* 2006, *12*, 5383; Corrigendum: Córdova, A.; Zou, W.; Dziedzic, P.; Ibrahem, I.; Reyes, E.; Xu, Y. *Chem. Eur. J.* 2006, *12*, 5175.
- 13. In a typical experiment, ketone **1a** (2.5 mmol) was dissolved in DMSO (1 mL) and the β -amino acid (0.07 mmol, 30 mol %) was added to the solution followed by the N-PMP-protected α -imino ester **2** (0.25 mmol) and sea water (1.25 mmol, 5 equiv). After stirring for 14 h, the reaction mixture was

purified by flash column chromatography (toluene/EtOAc mixtures) to give the pure amino acid derivative **3a**. Compound **3a**: ¹H NMR (400 MHz, CDCl₃): δ 6.75 (d, J = 8.75 Hz, 2H), 6.63 (d, J = 8.75 Hz, 2H), 4.17 (m, 2H), 3.98 (d, J = 3.90 Hz, 1H), 3.74 (s, 3H), 3.14–3.08 (m, 1H), 2.50–2.41 (m, 1H), 2.38–2.28 (m, 1H), 2.18–2.10 (m, 2H), 1.98–1.88 (m, 2H), 1.76–1.66 (m, 2H), 1.21 (t, J = 7.14 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 210.0, 173.1, 152.8, 142.2, 115.6, 114.8, 61.2, 59.1, 55.7, 53.6, 41.8, 30.5, 26.9, 24.6, 14.1. MS: calcd for C₁₇H₂₃NO₄Na (MNa⁺) 328.1525, found 328.1519. HPLC (AD, hexane/isopropanol 90:10, 0.5 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (*anti* minor enantiomer) = 33.4 min; $t_{\rm R}$ (*anti* major enantiomer) = 41.6 min. [α]²⁵ = +18.0 (*c* 1.0, 94% ee).

- 14. The addition of either synthetic seawater or 0.8 M NaCl solution had a better effect than the addition of pure water. Synthetic sea water ASTM D665 was purchased from Aldrich and contains 0.5–0.9 M NaCl. The addition of NaCl has also been succesfully used in a chiral pyrrolidine-catalyzed direct Michael reaction. See: Mase, N.; Watanabe, K.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc. 2006, 128, 4966.
- 15. In a typical experiment, ketone 1 (2.5 mmol) was dissolved in DMSO (1 mL) and the β -amino acid (0.07 mmol, 30 mol %) was added to the solution followed by the N-PMP-protected α -imino ester 2 (0.25 mmol) and sea water (1.25 mmol, 5 equiv). After stirring for the time given in the table, the reaction mixture was purified by flash column chromatography (toluene/EtOAc mixtures) to give the pure amino acid derivative 3a.
- Córdova, A.; Notz, W.; Zhong, G. F.; Betancort, J. M.; Barbas, C. F., III. J. Am. Chem. Soc. 2002, 124, 1842.